Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest
نویسندگان
چکیده
The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.
منابع مشابه
Cadherin-6B proteolysis promotes the neural crest cell epithelial-to-mesenchymal transition through transcriptional regulation
During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase gene...
متن کاملTetraspanin18 is a FoxD3-responsive antagonist of cranial neural crest epithelial-to-mesenchymal transition that maintains cadherin-6B protein.
During epithelial-to-mesenchymal transition (EMT), tightly associated, polarized epithelial cells become individual mesenchymal cells capable of migrating. Here, we investigate the role of the transmembrane protein tetraspanin18 (Tspan18) in chick cranial neural crest EMT. Tspan18 mRNA is expressed in premigratory cranial neural crest cells, but is absent from actively migrating neural crest ce...
متن کاملCadherin 6B induces BMP signaling and de-epithelialization during the epithelial mesenchymal transition of the neural crest.
The development of neural crest cells involves an epithelial-mesenchymal transition (EMT) associated with the restriction of cadherin 6B expression to the pre-migratory neural crest cells (PMNCCs), as well as a loss of N-cadherin expression. We find that cadherin 6B, which is highly expressed in PMNCCs, persists in early migrating neural crest cells and is required for their emigration from the...
متن کاملABSTRACT Title of Document: MOLECULAR MECHANISMS UNDERLYING CADHERIN- 6B INTERNALIZATION IN PREMIGRATORY CRANIAL NEURAL CREST CELLS DURING THEIR EPITHELIAL- TO-MESENCHYMAL TRANSITION
Title of Document: MOLECULAR MECHANISMS UNDERLYING CADHERIN6B INTERNALIZATION IN PREMIGRATORY CRANIAL NEURAL CREST CELLS DURING THEIR EPITHELIALTO-MESENCHYMAL TRANSITION Rangarajan Padmanabhan, Doctor of Philosophy, 2015 Directed by: Lisa Taneyhill, Assistant Professor, Department of Animal and Avian Sciences The generation of migratory cells from immotile precursors occurs frequently throughou...
متن کاملFoxD3 regulates cranial neural crest EMT via downregulation of tetraspanin18 independent of its functions during neural crest formation
The scaffolding protein tetraspanin18 (Tspan18) maintains epithelial cadherin-6B (Cad6B) to antagonize chick cranial neural crest epithelial-to-mesenchymal transition (EMT). For migration to take place, Tspan18 must be downregulated. Here, we characterize the role of the winged-helix transcription factor FoxD3 in the control of Tspan18 expression. Although we previously found that Tspan18 mRNA ...
متن کامل